Depression of developing neuromuscular synapses induced by repetitive postsynaptic depolarizations.

نویسندگان

  • Y J Lo
  • Y C Lin
  • D H Sanes
  • M M Poo
چکیده

Effect of postsynaptic activity on the synaptic efficacy was studied in Xenopus nerve-muscle cultures. Repetitive postsynaptic depolarizations induced by injection of current pulses into singly innervated myocytes resulted in significant reduction in the frequency of spontaneous synaptic currents and the amplitude of nerve-evoked synaptic currents at the majority of synapses that showed immature synaptic properties. Repetitive hyperpolarizations and steady depolarizations of similar duration were without effect. The depolarization-induced synaptic depression appeared to result predominantly from a reduced ACh secretion from the presynaptic nerve terminal. Buffering the myocyte cytosolic Ca2+ at a low level with intracellular loading of a Ca2+ buffer, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA), significantly reduced the effect of the depolarizations. Thus postsynaptic electrical activity can regulate the synaptic efficacy of the developing neuromuscular synapases and the regulation may be mediated by retrograde transsynaptic interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic Elevation of Calcium Induces Persistent Depression of Developing Neuromuscular Synapses

Synaptic activity is known to modulate neuronal connectivity in the nervous system. At developing Xenopus neuromuscular synapses in culture, repetitive postsynaptic application of ACh near the synapse leads to immediate and persistent synaptic depression, which was shown to be caused by reduction of presynaptic evoked transmitter release. However, little depression was found when ACh was applie...

متن کامل

Pro-BDNF–induced synaptic depression and retraction at developing neuromuscular synapses

Postsynaptic cells generate positive and negative signals that retrogradely modulate presynaptic function. At developing neuromuscular synapses, prolonged stimulation of muscle cells induces sustained synaptic depression. We provide evidence that pro-brain-derived neurotrophic factor (BDNF) is a negative retrograde signal that can be converted into a positive signal by metalloproteases at the s...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Brief Subthreshold Events Can Act as Hebbian Signals for Long-Term Plasticity

BACKGROUND Action potentials are thought to be determinant for the induction of long-term synaptic plasticity, the cellular basis of learning and memory. However, neuronal activity does not lead systematically to an action potential but also, in many cases, to synaptic depolarizing subthreshold events. This is particularly exemplified in corticostriatal information processing. Indeed, the stria...

متن کامل

Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.

In cultures of dissociated rat hippocampal neurons, persistent potentiation and depression of glutamatergic synapses were induced by correlated spiking of presynaptic and postsynaptic neurons. The relative timing between the presynaptic and postsynaptic spiking determined the direction and the extent of synaptic changes. Repetitive postsynaptic spiking within a time window of 20 msec after pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 8  شماره 

صفحات  -

تاریخ انتشار 1994